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Asteroids

e \Where are they?
e \What are they?

e \What do they look like”?

e Spin

e How did they get to where they are?
e \Where are they going?

e \Why study asteroids?

e Fun Stuff

= How we determine asteroid masses

= Chaotic motion in the asteroid belt
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Where are they?

e Main belt spans 4:1 resonance to 2:1
resonance

e "Near Earth" asteroids (NEASs)
e Trojans (1:1 resonance)

e Distant objects
= Kuiper belt (short-period comet reservoir)
= none between Jupiter and Saturn

= "true" asteroids stop at the Trojans
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An Asteroids Snapshot

Asteroids.prz 4 July 30, 1996



The Asteroid Distribution
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Fig. 2. Heliocentric distribution of orbital semimajor axes for nearly 4000 numbered asteroids. Commonly referred to
regions and the major Jovian resonances are labeled. Other frequently referred to zones (such as those defined by
Zellner et al. 1985a) and their eccentricity and inclination boundaries are listed in Table I of the chapter by Gradie et
al. Compare this diagram with that on the back cover (which depicts the actual asteroid positions at a given moment in
time) to see how orbital eccentricities tend to “smear” this distribution.

e Kirkwood gaps
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The Asteroid Distribution

L

| _ | _ |

)
™

0¥

0€ 0¢ 01
(saaadap) uorjeurjoul

0

semimajor axis (AU)

July 30, 1996

Asteroids.prz



The Outer Solar System
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Plot prepared on 1996 June 03
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What are they?

e Approaching 10,000 numbered objects

e Size
= from occultations (~50)
e 933 km (Ceres) down to <10 (observational limits)

= from infrared observations

e dependent on accuracy of thermal models

= |RAS:
e over 1800 known objects recognized

e ~10000 asteroids detected

e Mass
= direct measurements for a few (later in talk)

= from diameters and the adoption of "reasonable”
densities

e Composition
m spectroscopy

m meteorites
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IRAS Diameters
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Fig. 3. Diameter plotted against heliocentric distance for IRAS asteroids with low visual geo-

metric albedos (p, < 0.1). Separate model diameters have been derived from the observed flux

density at 25 wm for each accepted observation.
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What do they look like?

e Shape
= from stellar occultations (a handful)
m speckle interferometry

m radar

e Appearance

m speckle interferometry
e short exposures (10-50 ms)
e narrow bandpass (100-300 A)

e combine in Fourier domain to recover
diffraction limited information

e image reconstruction

e resolved, very bright objects only
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Occultation Paths

Selected occultations of PPM stars by asteroids > 30 km visible in Europe in 1996: Jul ->Dec.
90 | - I . | ——

Geographic Latitude

Geographic Longitude
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Shape from Profile Occultations

Fig. 1. Chords across 2 Pallas derived from observations of the 29 May 1983 occultation of 1
Vulpeculae (D. W. Dunham et al. 1983).
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Speckle Interferometry Image of Vesta

Fig. 4. Reconstructed image of 4 Vesta. This reconstruction of an image was made with the
Knox-Thompson algorithm applied to the first Vesta observation of 14 Nov. 1986. The size of
Vesta at this time was 0.50 by 0.47 arcsec with the position angle of the long axis oriented 50°
West (counterclockwise) of North (left) as determined from PSSA.
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What do they look like?

e Appearance

= radar doppler/delay images

e Arecibo and Goldstone: (Steven Ostro's
toys)

= Galileo!
e Surface texture

= polarimetry
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Polarization
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Fig. 1. Curve of polarization showing degree of linear polarization as a function of solar phase

angle, for asteroid 1 Ceres. Definitions are shown for the polarization parameters P, V,, and
h (figure adapted from Zellner et al. 1974).
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Polarization
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Fig. 5. Polarization of asteroids in the P ;,—V, diagram of Fig. 3. Asteroids are in the zone
between the area I, corresponding to large rock fragments and area II for fine powders such as
lunar samples. Both S (circles), E and V asteroids and C asteroids (crossed circles) appear to be
covered with a coarse-grained regolith (figure from Dollfus et al. 1977). M asteroids occupy
area II (Dollfus et al. 1979).
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Arecibo
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1620 Geographos (radar image)
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4179 Toutatis (radar image)
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Ida and Dactyl (Galileo visual image)
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Do they spin or just sit there?

e They spin
e How spin & orientation are measured

= photometry

m radar

e Photometry:
= Spin periods
= spin orientations
» ¢llipsoidal shape parameters

e from amplitudes and absolute magnitudes

e Places constraints on collisional evolution
of orbits around the Sun
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An Asteroid Light Curve
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Fig. 2. The composite lightcurve of 44 Nysa, obtained on 23 nights from June to October, 1986.
There are 340 individual observations in this plot. The lightcurve was constructed with the
Fourier-analysis method described in the text. There was some slight change in lightcurve form
over the course of the observations, as revealed by the strings of deviant points near the ex-
trema at 14h and 15h5.
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Another Asteroid Light Curve

1173 Anchises
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Fig. 2. Lightcurve of Trojan asteroid 1173 Anchises, corrected for distance and solar phase-angle
effects. Observations were made with the Cerro Tololo 0.9-m telescope and a GEC CCD
detector. The smooth curve is a four-component Fourier series used to remove the effects of the
mean lightcurve in modeling the phase properties (figure from French 1987).
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Pole Latitudes from Photometry

Retrograde Prograde

rotation rotation

Fig. 11. Distribution of pole latitudes for a set of large main-belt asteroids. Black boxes indicate
objects larger than 200 km and gray boxes, smaller objects. See also an alternative representa-
tion, where the distribution of the spin-vector components perpendicular to the ecliptic plane is
given by Magnusson (1988).

Asteroids.prz 25 July 30, 1996



Ellipsoidal Parameters from Photometry
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Fig. 10. A homogeneous set of ellipsoidal model parameters (a/b, b/c) for large main-belt as-
teroids. The loci of Maclaurin spheroids and Jacobi ellipsoids are also shown for comparison
(Chandrasekhar 1969). Because of known observational biases, the number of asteroids near
the Maclaurin spheroid curve is probably underestimated. Geometric scattering was assumed in
the shape determination.
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How did they get there?

e Titius-Bode law: a planet should be there

e Busted planet?

m Solar system news (early formation
edition): huge collision shatters planet!

= probably not

e Failed planet

m Perturbations from Jupiter kept a planet
from fully forming in that region

e Jupiter formed first

e sets bounds on the timescale for growth of
Jupiter and the rest of the gas giants (a
Very Important Problem)

= currently the most-favored theory

e Significant collisional evolution
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Where are they going?

e Collisional evolution
= can result in planet-crossing trajectories

= smaller pieces: nongravitational effects
e (early) inward spiraling from gas drag

e (early) entrainment during outflow of
nebular gas

e Poynting-Robertson drag (dust)

e Dynamical evolution

= removal from mean motion resonance
regions

e Kirkwood gaps

¢ high-eccentricity particles collide with other
main-belt particles

= dynamical mechanism: chaos

e Jack Wisdom's work in the early to mid 80s
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The Short-Period Comet Invasion
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Fig. 1. Short-period comets (solid circles) and asteroids (open circles) plotted on a scatter dia-
gram of semimajor axis vs eccentricity (Kresak 1985). Increasing circle size indicates esti-
mated size of the objects: diameter << 1 km or lost, 1 to 3 km, 3 to 10 km, 10 to 30 km and >
30 km. Different regions identified within the diagram are: (A) transjovian region, (B) Jupiter
domain of weak cometary activity, (C) Jupiter domain of strong cometary activity, (D) minor
planets region, and (E) Apollo-Aten region. The dashed line going from upper left to lower
right corresponds to a Tisserand invariant of 3.0, the usual dividing line between comets and
asteroids. However, note the several asteroids above the line in the cometary region C; the
figure has been modified to include seven new asteroids in or near region C discovered since
Kresdk’s (1985) work was published.
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Why study asteroids?

e Only existing planetesimals that date
back to formation of solar system

= provide a snapshot of conditions that
prevailed in the early stages of the solar
system and planetary formation

= places bounds on solar system formation
theories

e | ocated in the transition region between
inner (rocky) and outer (gas giants)
planets

m constraints on solar nebula parameters
and evolution

m constraints on planet formation processes

e Believe it or not, they noticeably affect the
motions of the planets
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Why study asteroids?

e Source for most meteorites

= Dynamical evolution leads to
planet-crossers

= "Meteorites" includes the big ones, too
e previous mass species extinctions

e potential future mass extinctions!

m distribution of meteorites spans several
early stages of solar system formation

e time scales for various processes

e chemical composition
» temperatures
>~ pressures
» characteristics of early Sun

» characteristics of solar nebula
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Why study asteroids?

e Laboratory for Hamiltonian Dynamics

m resonance structures and effects
= clues to solar system stability

= development of fast and/or accurate
numerical integration methods

e mathematically interesting in and of
themselves (mappings)
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Fun Stuff: Mass determinations

eonly ~12 masses currently known

e asteroid-asteroid perturbations

= currently the most reliable method
(~10-25%)

= radar observations are best
m USNO: Ceres, Pallas, Vesta, Eunomia
e over 400 useful encounters in near future
e perturbations of Mars(!)

m radar observations of both asteroid and
Mars

= 3 masses determined (Ceres, Pallas,
Vesta)

= ~30 within detectable range
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Fun Stuff: Mass determinations

e spacecraft perturbations
= Galileo flew by too fast...
e asteroid satellites

» P2 = dn” a’
G(M +m)

= Galileo flew by too fast...
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Fun Stuff: Chaotic motion and resonances

e \WVhat are resonances?
= mean motion resonances

m secular resonances

e Mapping out the resonance structures

= no stable regions between Jupiter and
Saturn

m chaotic zones correspond to the Kirkwood
gaps!

m excursions into high-eccentricity regions
produce planet-crossing trajectories

e reservoir of NEAs

e reservoir of meteorites to inner solar
system
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Mean Motion Resonance Structure in the
Outer Asteroid Belt

outer-belt mean motion resonances
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Chaotic Zones

e Chaotic zone structure of the 2:1
resonance

Fig. 2. Maximum eccentricity reached after 7000 Jupiter periods for test asteroids (figure from
Murray 1986).
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Surface of Section

e Regular motion
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Surface of Section

e Chaotic motion
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Surface of Section
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e Strong chaos
e Resonant islands
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Surface of Section

e Large excursions

dx/dv
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Chaotic Regions

e L_arge excursions possible

m planet-crossing trajectories

02

-02 | 1 SR
-0.1 0.0 0.1 0.2 03
X

Fig. 3. Numerically generated surface of section computed with Wisdom’s mapping. Large cha-
otic zones appear. The narrow region generates high eccentricities at irregular intervals (figure
from Wisdom 1985).
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Overlapping Resonances

e Resonance overlap produces regions of
chaotic motion

Eccentricity

Semimajor Axis (AU)

Fig. 3. All the numbered asteroids listed in the TRIAD file (Bender 1979) are plotted. The solid
lines represent the libration width associated with the leading eccentricity term in the expansion
of the perturbing function at the strongest Jovian resonances. Resonance overlap occurs where
the solid lines meet. In the region of resonance overlap, the libration widths of the 2:1 and 3:2
resonances are represented by dashed lines (figure courtesy of Dermott and Murray 1983).
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Fun Stuff: Measures of chaotic motion

e Power spectra of outer belt asteroids

m extreme chaos
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Power Spectrum of 414 Liriope
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Power Spectrum of 260 Huberta
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Fun Stuff: Measures of chaotic motion

e The Lyapunov exponent A is a measure
of orbit separation:

A= lim }Iog a@)
t>oo [ d(0)

d(t) ~ d(0) et
where d(t) is distance in phase space.

e ). > 0 indicates chaos

e Magnitude of A is a measure of severity of
chaotic motion.

e Question: how can we relate a "Lyapu-

nov timescale"

1
T =—
L2

to a dynamical stability timescale”
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Lyapunov Exponent Examples

e Typical behavior of the Lyapunov
exponent over time for chaotic orbits:

2203
231
2e0
414
535
a7

Here we have A(t) for 6 outer belt asteroids. All
exhibit strong chaotic motion, while two are
extremely chaotic.
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Lyapunov Exponent Relation

e The Lyapunov exponent relation is an
empirically determined one:

T T,
log € —= loo L
ogTO a+b0gTo

where T, is the "event" timescale (time to
orbit crossing, collision, or ejection) and
a, b, and T, are constants.

e For a large variety of dynamical systems,
04<a< 2 and 14<b< 19

e [ntegrating a dynamical system (e.g. the
solar system) to T, is normally very
expensive, while integrating just to
determine T, is not (by ~3-5 orders of
magnitude). Hence the relation is
potentially a powerful prediction
mechanism.
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Lyapunov Exponent Relation

m= 10 g,

log T,

log To=a+blog T;
@ =130£0.03
h=174£003
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Variation across High-Order Resonance
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Variation across Resonances
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Variation across Resonances

e These 2 panels are a scan of A across initial semimajor axis in a

small section of the outer asteroid belt (but larger than the snippets
in the previous panels). The detected resonances are marked. Note
the change of ordinate scale in the upper panel.
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